
CATEGORY THEORY

TOPIC 22: METRIC SPACES

PAUL L. BAILEY

1. Prerequisites

We will adopt the convention that complements are assumed to be with respect
to some predetermined fixed set X. Thus, for A ⊂ X, define

Ac = X rA = {z ∈ X | z /∈ A.}
We will need DeMorgan’s Laws of set theory, which state:

• X r (A ∪B) = (X rA) ∩ (X rB)
• X r (A ∩B) = (X rA) ∪ (X rB)

Using complements in X, this becomes

• (A ∪B)c = Ac ∩Bc

• (A ∩B)c = Ac ∪Bc

We may rephrase these in words:

• If z is not in either A or B, then z is not in A and z is not in B.
• If z is not in both A and B, then z is not in A or z is not in B.

It should be noted that DeMorgan’s Laws may be generalized to unions and inter-
sections of arbitrarily many sets.

By common convention, if we say, “let r > 0”, we mean “let r denote a positive
real number”.

If A and B are sets, we say that A intersects B is A ∩B 6= ∅.
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2. Metric Spaces

Definition 1. Let X be a set. A metric on X is a function

d : X ×X → R
satisfying

(M1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (Positivity);
(M2) d(x, y) = d(y, x) (Symmetry);
(M3) d(x, y) + d(y, z) ≥ d(x, z) (Triangle Inequality).

The pair (X, d) is called a metric space.

Example 1. The set of real numbers is a metric space. The distance from x to y
is defined by d(x, y) = |x− y|.
Example 2. Let X = R2 and use the Pythagorean theorem to define the metric d
by

d(p, q) =
√

(x2 − x1)2 + (y2 − y1)2,

where p = (x1, y1) and q = (x2, y2).

Example 3. Let X = R3. Two applications of the Pythagorean theorem and some
slight simplification leads to the definition of the metric d by

d(p, q) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

where p = (x1, y1, z1) and q = (x2, y2, z2).

Example 4. Let X = Rn. We need to slightly modify our notation to conveniently
write the distance formula. Thus for p = (x1, x2, . . . , xn) and q = (y1, y2, . . . , yn),
define

d(p, q) =

√√√√ n∑
i=1

(xi − yi)2.

Example 5. Let R∞ denote the set of all sequences of real numbers that are
eventually zero, that is, sequences (xn) such that xn = 0 for all but finitely many
n. Let X = R∞ and for x, y ∈ X, define

d(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2,

where x = (xn) and y = (yn). This make sense, since there are only finitely many
nonzero summands. Then (X, d) is a metric space.

Example 6. Let X be any set and define d : X ×X → R by

d(x, y) =

{
0 if x = y;

1 otherwise .

Then d is a metric on X, called the discrete metric, and (X, d) is called a discrete
metric space.

Example 7. Let F[a,b] denote the set of all bounded functions f : [a, b] → R. Let
X = F[a,b] and for f, g ∈ X define

d(f, g) = max{|f(x)− g(x)| | x ∈ [a, b]}.
Then (X, d) is a metric space.
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3. Open Sets

Let (X, d) be a metric space. We make the following definitions.

Definition 2. Let a ∈ X and r > 0. The ball of radius r about a is the set

Br(a) = {z ∈ X | d(a, z) < r}.

Definition 3. Let U ⊂ X. We say that U is open if, for every u ∈ U there exists
r > 0 such that Br(u) ⊂ U .

Proposition 1. Let a ∈ X and let r > 0. Then Br(a) is open.

Proposition 2. Let U, V ⊂ X be open sets. Then U ∩ V is open.

Proposition 3. A subset of X is open if and only if it is a union of open balls.

Reason. Let U ⊂ X. If U is open, then every point in U admits an open ball that
is contained in U . Select such an open ball for each point in U , and take the union
of these balls, and you will obtain U . On the other hand, suppose U is a union of
open balls, and let u ∈ U . Then u is an element of some open ball, say u ∈ Br(v)
for some v ∈ U . Let s = r − d(u, v); then Bs(v) ⊂ U . �

Proposition 4. The following are true.

(T1) ∅ and X are open sets.
(T2) The union of any number of open sets is an open set.
(T3) The intersection of finitely many open sets if an open set.

Reason. The empty set is vacuous open, since we cannot find a point in the empty
set which violates the condition for openness. For every u ∈ X, we have B1(u) ⊂ X,
so X is open.

Each open set is the union of open balls, so the union of a collection of open sets
is also a union of open balls, and so is also open.

Since the intersection of two open sets is open by Proposition 2, induction implies
that the intersection of finitely many open sets is also open. �

It is not the case that the intersection of infinitely many open sets is necessarily
open. To see this, consider that the intersection of all open balls around a given
point is the singleton set containing that point; for example,⋂

n∈N
B1/n(0) = {0}.
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4. Closed Sets

Definition 4. Let F ⊂ X. We say that F is closed if its complement, F c, is open.

We may apply DeMorgan’s Laws to Proposition 4 to obtain the following.

Proposition 5. The following are true.

(F1) ∅ and X are closed sets.
(F2) The intersection of any number of closed sets is a closed set.
(F3) The union of finitely many closed sets is a closed set.

5. Neighborhoods

Definition 5. Let a ∈ X A neighborhood of a is a subset N ⊂ X such that there
exists an open set U ⊂ N with a ∈ U .

Remark 1. Let a ∈ X. It is immediate that if N is a neighborhood of a, then
a ∈ N .

If U is an open set containing a, then U is itself a neighborhood of a, and is
referred to as an open neighborhood. Thus there exists at least one neighborhood
of a; indeed, X is open and contains a.

We are interested in sets A whose intersection with neighborhoods of a are
nonempty, in which case we say that A intersects the neighborhood. If a ∈ A,
then every neighborhood of a intersects A; this is the less interesting case for us.

Clearly A intersects every neighborhood of a if and only if A intersects every open
neighborhood of a; the forward direction is immediate and the reverse direction is
given by considering a neighborhood which does not intersect A, which must contain
an open neighborhood which does not intersect A.

Definition 6. Let a ∈ X. A deleted neighborhood of a is a set of the form N r{a},
where N is a neighborhood of a.

Remark 2. Let a ∈ X. If N r {a} is a deleted neighborhood of a which does not
intersect A, then either N does not intersect A or there is an open set U ⊂ N such
that a is the only element of A in that open set.
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6. Classification of Points

6.1. Interior Points.

Definition 7. Let A ⊂ X. An interior point of A is a point z ∈ A such that A
contains a neighborhood of z. The interior of A is the set of interior points of A
and is denoted A◦.

Proposition 6. Let A ⊂ X. Then A◦ ⊂ A.

Proof. Let a ∈ A◦. Then there exists a neighborhood of a which is contained in A.
Since a is in this neighborhood, it is the case that a ∈ A. So A◦ ⊂ A. �

Proposition 7. Let A ⊂ X. Then A◦ open.

Proof. Let a ∈ A◦. Then a is an interior point of A, so there exists an open
neighborhood Ua of a such that Ua ⊂ A. If u ∈ Ua, then Ua is also an open
neighborhood of u, so that u ∈ A◦; thus Ua ⊂ A◦.

Thus for each a ∈ A◦, let Ua be a open neighborhood of a which is contained in
A◦. Let U =

⋃
a∈A Ua; since U is a union of open sets, U is open.

We claim that A◦ = U . To see this, consider that if a ∈ A◦, then a ∈ INTUa,
so a ∈ U , so A◦ ⊂ U . On the other and, if u ∈ U , then u ∈ Ua for some a, and
Ua ⊂ A◦, so u ∈ A◦, so U ⊂ A◦. Thus U = A◦, and since U is a union of open sets,
A◦ is open. �

Proposition 8. Let A ⊂ X. Then A is open if and only if A = A◦.

Proof. Suppose A is open. We already know that A◦ ⊂ A. Since A is a neighbor-
hood of every point in A, every point in A is an interior point, so A ⊂ A◦.

Suppose that A = A◦. Since A◦ is open, so is A. �

Proposition 9. Let A ⊂ X. Then A is open if and only if every point in A is an
interior point.

Proof. This is just a rewording of the previous proposition. �

Proposition 10. Let A ⊂ X. The interior of A is the union of all open sets which
are contained in A.

Proof. Let U = {U ⊂ X | U is open and U ⊂ A}. We wish to show that A◦ = ∪U.
Since A◦ is an open set which is contained in A, A◦ ∈ U, so A◦ ⊂ ∪U.
On the other hand, every point u ∈ U is in U for some U ∈ U, so U is a

neighborhood of u which is contained in A, so u is an interior point of A, ad
u ∈ A◦; thus ∪U ⊂ A◦. �

Proposition 11. Let A,B ⊂ X. Then

(a) A ⊂ B ⇒ A◦ ⊂ B◦;
(b) (A◦)◦ = A◦;
(c) (A ∩B)◦ = A◦ ∩B◦.

Proof. Exercise. �
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6.2. Closure Points.

Definition 8. Let A ⊂ X. A closure point of A is a point z ∈ X such that every
neighborhood of z intersects A. The closure of A ⊂ X is the set of closure points
of A and is denoted A.

Proposition 12. Let A ⊂ X. Then A ⊂ A.

Proof. Let a ∈ A. Every neighborhood of a contains a, and since a ∈ A, every
neighborhood of a intersects A. Thus a is a point of closure of A, so a ∈ A. �

Proposition 13. Let A ⊂ X. Then A is closed.

Proof. Wish to show that A
c

is open. Thus let u ∈ A
c
, so that u is not a closure

point of A. This means that there exists an open neighborhood U of u which does
not intersect A. If v ∈ U , then U is a neighborhood of v which does not intersect
A, so v is not a closure point of A. Hence U ⊂ A

c
, which shows that u is an interior

point of A
c
, so A

c
is open. Therefore A is closed. �

Proposition 14. Let A ⊂ X. Then A is closed if and only if A = A.

Proof. Suppose A is closed. We have already seen that A ⊂ A. Now suppose that
u /∈ A. Then u ∈ Ac, which is open, so there exists a neighborhood U of u which
is contained in Ac, so U does not intersect A. Thus u is not a closure point of A,
so u /∈ A. Thus a ∈ A if and only if a ∈ A, so A = A.

On the other hand, if A = A, then A is closed, since A is closed. �

Proposition 15. Let A ⊂ X. Then A is closed if and only if every point in A is
an closure point.

Proof. This is just a rewording of the previous proposition. �

Proposition 16. Let A ⊂ X. Then A is the intersection of the closed subsets of
X which contain A.

Proof. Let F = {F ⊂ X | F is closed and A ⊂ F}. We wish to show that A = ∩F.
Since A is a closed set which contains A, A ∈ F, so ∩F ⊂ A.
Now suppose u /∈ ∩F. Then u /∈ F for some F ∈ F. Thus u ∈ F c, which is open,

so there exists an open neighborhood U of u which is contained in F c ⊂ X r A.
That is, U does not intersect A, and u is not a closure point of A. Thus b ∈ A if
and only if b ∈ ∩F, so A = ∩F. �
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Proposition 17. (Kuratowski Closure Operator)
The following are true.

(K1) ∅ = ∅;
(K2) A ⊂ A;

(K3) A = A;

(K4) (A ∪B) = A ∪B.

Proof. The first two are immediate from the definition.

From (K2) we have A ⊂ A. Suppose that x ∈ A. Then every open neighborhood
of x intersects A. For any open neighborhood U of x, let y ∈ U ∩ A. Then every
open neighborhood of y intersects A. Since U is an open neighborhood of y, U
intersects A. Thus x ∈ A.

Suppose that x /∈ A ∪ B. Then there exists a neighborhoods U, V of x such
that U ∩ A = ∅ and V ∩ B = ∅. Then U ∩ V is a neighborhood of x such that
(U ∩ V ) ∩ (A ∪B) = ∅. So x /∈ (A ∪B). Therefore (A ∪B) ⊂ A ∪B.

Suppose that x ∈ A∪B. Then every open neighborhood of x intersects A or B,
so it intersects A ∪B. Thus x ∈ A ∪B, so A ∪B ⊂ (A ∪B). �

Proposition 18. Let A,B ⊂ X. If A ⊂ B, then A ⊂ B.

Proof. Let y ∈ A. Then every neighborhood of y intersects A. Since A ⊂ B, every
neighborhood of y intersects B. Thus y ∈ B. �

Proposition 19. Let A ⊂ X. Then

(a) A◦ = ((Ac))c;
(b) A = ((Ac)◦)c.

Proof. Exercise. �
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6.3. Boundary Points.

Definition 9. Let A ⊂ X. A boundary point of A is a point z ∈ X such that every
neighborhood of z intersects A and Ac. The boundary of A is the set of boundary
points of A and is denoted ∂A.

Proposition 20. Let A ⊂ X. Then

(a) ∂A = ArA◦;
(b) ∂A = A ∩Ac;
(c) ∂A = ∂Ac;
(d) A = A ∩ ∂A;
(e) A◦ = Ar ∂A;
(f) ∂(∂A) ⊂ ∂A;
(g) A ∩B ∩ ∂(A ∩B) = A ∩B ∩ (∂A ∪ ∂B).

Proposition 21. Let A ⊂ X. Then ∂A = ∅ if and only if A is both open and
closed.

Proof.
(⇒) Suppose that ∂A = ∅. Then A ⊂ A◦. But A◦ ⊂ A ⊂ A, so A◦ = A = A.

Thus A is both open and closed.
(⇐) Suppose that A is both open and closed. Then A◦ = A = A, so ∂A =

ArA◦ = ∅. �

6.4. Accumulation Points.

Definition 10. Let A ⊂ X. A accumulation point of A is a point z ∈ X such that
every deleted neighborhood of z intersects A. The derived set of A is the set of
accumulation points of A and is denoted A′.

Proposition 22. Let A,B ⊂ X.

(a) A ⊂ B ⇒ A′ ⊂ B′;
(b) (A ∪B)′ = A′ ∪B′;
(c) A = A ∪A′.

Corollary 1. A subset of X is closed if and only if it contains all of its accumu-
lation points.

6.5. Isolated Points.

Definition 11. Let A ⊂ X. An isolated point of A is a point z ∈ A such that some
deleted neighborhood of z is contained in Ac. The set of isolated points of A will
be denoted Ȧ.

Proposition 23. Let A ⊂ X.

(a) Ȧ ⊂ A;

(b) Ȧ ⊂ ∂A;

(c) A = A′ t Ȧ.
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